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Abstract

The quantification of the radial transport of gaseous species and solid particles is important to many applications in
protoplanetary disk evolution. An especially important example is determining the location of the water snow lines
in a disk, which requires computing the rates of outward radial diffusion of water vapor and the inward radial drift
of icy particles; however, the application is generalized to evaporation fronts of all volatiles. We review the
relevant formulas using a uniform formalism. This uniform treatment is necessary because the literature currently
contains at least six mutually exclusive treatments of radial diffusion of gas, only one of which is correct. We
derive the radial diffusion equations from first principles using Fick’s law. For completeness, we also present the
equations for radial transport of particles. These equations may be applied to studies of diffusion of gases and

particles in protoplanetary and other accretion disks.
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1. Introduction

One of the outstanding issues in studies of protoplanetary
disks is the issue of radial mixing of both gaseous species and
particles with a range of sizes from microns to meters. Just a
few examples of problems illustrate the importance of
quantifying such radial diffusion. The Stardust mission
discovered high-temperature condensates that resemble frag-
ments of chondrules and calcium-rich, aluminum-rich inclu-
sions—objects that formed at high temperatures indicative of
an origin in the inner solar system—in the returned sample
from comet Wild 2, which must have formed in the outer solar
system (Zolensky et al. 2006). Oxygen isotopic anomalies in
meteorites are quite possibly carried by isotopically distinctive
water formed in the outer solar system, which was radially
advected inward as icy particles to the asteroid belt region
(Lyons et al. 2009). There is evidence that enstatite chondrites
record formation in a part of the solar nebula with elevated
sulfur composition, possibly related to a sulfur snow line in
which sulfur vapor diffuses outward beyond a condensation
front (Pasek et al. 2005; Petaev et al. 2011). Finally, H,O snow
lines are very important in our solar system for determining the
water content of asteroids and planets. Just beyond the snow
lines, outwardly diffusing water vapor can be cold-trapped as
ice, enhancing the density of solid ice there and possibly
triggering Jupiter’s formation (Stevenson & Lunine 1988;
Cuzzi & Zahnle 2004). In each of these problems, it is
important to quantify how water or other vapor diffuses relative
to the gas, as well as how particles of various sizes drift and
diffuse relative to the gas.

The flow of matter through the disk is described by a formula
for the time evolution of the surface density of gas, ¥(r, t),
which is a function of heliocentric distance r and time ¢. This
evolution can be written as two first-order differential equations
for the viscous evolution of an accretion disk (Lynden-Bell &
Pringle 1974). The first one describes the change in surface
density X as mass flows into and out of each annulus:
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where V, = —M /(27r) is the average gas velocity (positive if
outward). The second one describes the flow of mass due to the
exchange of angular momentum between two adjacent annuli,
coupled by a viscous torque mediated by turbulent viscosity v:

M = 6r rl/? ag(rl/2 Yv) =3rXv(l + 20), ()
r
where Q = 0In(Zv)/0Inr and M > 0 if the flow is inward.
An important quantity is the radial velocity of the gas,
M
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(inward gas flow has V; < 0). Boundary conditions placed on
M at the inner and outer edges of the disk suffice to close the
equations. One can also write these equations as a single
second-order differential equation for X:

ox_390 [rl/z 9 i zu)]. @)
ot r Or or

Self-similar solutions have been presented by Lynden-Bell &
Pringle (1974) and Hartmann et al. (1998), and this treatment is
standard in the literature.

What is sought is an additional formula that describes the
evolution of the surface density of a tracer volatile, ¥, or the
evolution of the concentration of the volatile, ¢ = 3. /2.
Sometimes the volatiles are in the form of gas (vapor) or are
sometimes in the form of solid particles (e.g., icy grains) of
potentially any size. In Section 2, we show that the literature
currently contains multiple mutually exclusive formulas for the
radial transport of gaseous tracer species, which are defined to
be dynamically well-coupled to the gas. In Section 3, we derive
the correct formula from first principles using Fick’s law. In
Section 4, for completeness, we provide a similar formula for
the radial transport of solid particles. Finally, in Section 5, we
discuss the different outcomes predicted by various treatments
to illustrate the importance of using the correct formula. Our
goal is to clear up the discrepancies in the literature and to
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provide a resource for other researchers studying radial
transport in accretion disks.

2. Existing Treatments of Gas Diffusion

Reviewing the literature, we found at least nine separate,
original derivations that include six mutually exclusive
differential equations describing how the concentration ¢ of a
gaseous tracer species changes in time due to diffusion relative
to the main gas in a protoplanetary disk. What defines a
gaseous tracer species is that it is dynamically well-coupled to
the gas. This definition includes gaseous vapor, but could also
apply to very small particles as well. Here we review the
various formulas for radial transport of gaseous tracer species
using a standardized formalism, in which the radial velocity of
the main gas is V; due to a turbulent viscosity v, and in which
the tracer species diffuses relative to the gas with diffusion
coefficient D,. The mass diffusion coefficient of gas D, and the
kinematic viscosity v are related but need not be identical; their
ratio is the Schmidt number Sc = v/D,. We consider D, and v
to both vary with the heliocentric distance.

2.1. Clarke & Pringle (1988), Gail (2001),
and Bockelée-Morvan et al. (2002)

Clarke & Pringle (1988), Gail (2001), and Bockelée-Morvan
et al. (2002) each independently studied the problem of radial
mixing in the same manner. Each started with the following
equation, given by Morfill & Voelk (1984):

A(cp)

A\
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(Gail 2001 cited Hirschfelder et al. 1964). Assuming
axisymmetry, integrating this over all z, assuming p(z)
vanishes far from the midplane, and assuming ¢ and D, are
vertically uniform, one derives
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Likewise, one can vertically integrate the continuity equation,
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to find
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Multiplying this equation by c¢ and subtracting from the
previous one yields
oc A g = Li(,ﬁ ¥ D, %)’ 9)
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which is equivalent to Equation (2.1.4) of Clarke & Pringle
(1988), Equation (12) of Gail (2001), and Equation (4) of
Bockelée-Morvan et al. (2002). We note that it is also
equivalent to Equation (21) of Cuzzi et al. (2003), who based
their derivation on that of Bockelée-Morvan et al. (2002).
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If one assumes Sc = 1, one can write
Oc 5 10c 0%
— = + . 10
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2.2. Stevenson & Lunine (1988)
Stevenson & Lunine (1988) started with the equation

dc dc Dy 0 ( 36)
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(their Equation (6)), then argued that V; ~ —v/r =~ —D,/r on
dimensional grounds, to derive a simplified formula. Their
treatment captures the physics of the problem but neglects the
effects of any radial gradients in the density and the diffusion
coefficient. Assuming Sc = 1, it is straightforward to show this
equation can be rewritten as

2
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2.3. Drouart et al. (1999)

A different treatment was adopted by Drouart et al. (1999),
who wrote:
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(their Equation (9)). This can be rewritten as
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Assuming Sc = 1, we can also write this as
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This differs from the other treatments because it includes a term
proportional to the concentration and the divergence of the
velocity field, which erroneously implies that the concentration
would increase if the density were to increase.

2.4. Cuzzi & Zahnle (2004)

The treatment of Cuzzi & Zahnle (2004) is similar, but not
quite identical. Setting f; = O in their Equations (1) and (2)
yields

o a T moar
This resembles the equations derived by Clarke & Pringle
(1988) and others, but includes several extra terms involving
the gradients of ¥ and D,.

Oc _y e L0 [Dgﬁ(cz)]. (16)
or

2.5. Ciesla & Cuzzi (2006) and Guillot & Hueso (2006)

Two later treatments started with different equations but
apparently includes a common starting assumption. Ciesla &
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(their Equation (11)), while apparently deriving their equations
by assuming >. would evolve by the same differential equation
as X. Guillot & Hueso (2006) wrote
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(their Equation (5)). It is straightforward to show that these are
equivalent, and both can be rewritten (again assuming Sc = 1) as
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It is notable that in this treatment, the diffusion coefficient is
3v, and is not the value v that should obtain in the limit of small
spatial scales.

2.6. Ciesla (2009)

Ciesla (2009) derived a diffusion equation starting with the
two-dimensional formula

Oc 1
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ot
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(Equation (9)), which is equivalent to
Jdc
8_ + V (pev) = —V - (prVo), 2n

which assumes axisymmetry. In the same manner as before,
this can be converted to a one-dimensional form by integrating
over all z, assuming v and ¢ are vertically uniform. One finds

Oc 1 1 0 Oc
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This differs from previous treatments in that the product XV is
inside the radial derivative on the left side. This formula can be
rewritten as

dc ¢ 0% 5 10c 0%
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This is identical to the formula of Gail (2001) except for the
term (c¢/33) 0% /0t on the left side, which erroneously assumes
that the concentration would change if the surface density were
to change (as was also assumed by Drouart et al. 1999).

3. Derivation of Gas Diffusion Equation

To determine which (if any) of the above equations are
correct, we derive the volatile radial diffusion equation from
first principles. A tracer species will be advected with the gas,
even as it diffuses relative to it. We assign an effective mass
accretion rate to the species ¢, which is the sum of the flux due
to its advection in the mean flow, and the diffusion flux due to
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concentration gradient that follows Fick’s law:
0
Z(pc) = -V - F, (24)
ot
where the flux of the tracer species is
F=pcv —"D,p Ve, (25)

where the first term is an advective term and the second term
captures diffusion of the tracer relative to the gas. Again,
integrating over z and assuming D,, ¢, and V, are vertically
uniform, we find

0 1 0 1 0 Oc

8t(2c)+rar(r2cvr) rE)r( DZa). (26)
Clarke & Pringle (1988) started with this equation (their
Equation (2.1.4)), deriving it from the contaminant equation
given by Morfill & Voelk (1984). We believe that Morfill &
Voelk (1984) are the first to write this (correct) three-
dimensional equation in the context of protoplanetary disks.
This equation is equivalent to setting the mass flux of the tracer
species to

M—cM+27erE% 27)

where D, is the diffusion coefficient of species ¢ through the
main gas. The sign of the diffusion flux means that species ¢
diffuses inward (positive M,) if Oc/Or > 0. We then write

1 aMc
= 28
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If we impose ¢ = 1, we recover
o 1 M (30)
o 27 or
as expected. Subtracting ¢ times this equation yields
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We replace M with 37X (1 + 2Q) to find
dc 3v D, 0%c
= =52 —+—1+ —+D :
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where Q' = 01In(XD,) /0Inr. Substituting D, = v//Sc,
dc 3 1+ Q’)) 1 Oc 1 0%
—=v||=0 +20) + —=|——+ —
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(33)

Note that the roles of diffusion (dependent on D, and advection
(affected by the gas velocity, and therefore v)) are separated.
Equation (33) is the proper equation to track the radial
evolution of gas-phase volatiles in protoplanetary disks. We
note that it is more general than many existing treatments, and
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clearly delineates the effect of the Schmidt number not equal to
unity.

For most normal solar nebula turbulent flows, it is very likely
that the Schmidt number is constant at Sc ~ 0.7 (e.g.,
Launder 1976; McComb 1990; Johansen et al. 2007; Hughes
& Armitage 2010). In the limit Sc = 1,

dc 5 10c 9%
o2 +a0) 2L L 34
ot V[(Z * Q) r or * 6r2] G

which matches the equations derived by Clarke & Pringle
(1988), Gail (2001), and Bockelée-Morvan et al. (2002).

In summary, we found six different, mutually exclusive
equations in the literature to describe the diffusion of gas in
protoplanetary disks. We advocate use of the most general
form, the above Equation (33), which works for an arbitrary
Schmidt number. In the limit Sc = 1, this equation matches
those of Clarke & Pringle (1988), Gail (2001), Bockelée-
Morvan et al. (2002), and Cuzzi et al. (2003). Even in the
limiting case Sc = 1, other treatments differ.

4. Radial Diffusion and Drift of Particles

Calculating the radial transport of solids is just as
fundamental a problem as calculating the radial transport of
gases. While very small (about micron-sized) particles have the
same transport properties as gas, the transport of larger particles
is more complicated because such particles not only are
advected and diffuse relative to the gas, but they also can drift
relative to the gas. The basis for particle drift is that gas in a
protoplanetary disk, which is partially supported against gravity
by a pressure gradient force, orbits the star with a velocity less
than the Keplerian velocity; particles, which try to maintain an
orbit at Keplerian velocity around the star, feel a headwind that
makes them lose angular momentum and spiral in toward the
star. For completeness, we discuss various approaches to the
calculation of these effects.

The radial transport of particles is governed by the same
general formulas as the gas is. Defining the concentration of
solid particles as ¢ = X/, one again has

0 1 oM,

ot (c2) 2mr Or %3)
as seen in Equation (27) for the gas, but where the mass
accretion rate associated with particles includes advection,
diffusion, and drift. One approach is to treat particles exactly as
a gaseous fluid, with M, defined as Equation (26), but with an
additional term for drift at velocity éu with respect to the gas,
so that
oc

M, =cM — 27r cX (Au) + 27 D, X 5> (36)
r

(here we assume Au < 0 if particles drift inward, making M,

more positive). Equivalently,

Oc

M, = —27r ¢S [—V; + Au] + 27r D, & e (37)
r
where V, + Au represents the total radial velocity of the
particles.
To calculate the total radial velocity of the particles, we favor
the approach of Takeuchi & Lin (2002; see also Nakagawa
et al. 1986, Birnstiel et al. 2010, and Estrada et al. 2016), which
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we reproduce here. Gas orbits the star with an angular velocity
Q= Qg (1 — n)'/2, where n = f(rQ%)*lpgl 8Pg/3r ~1073,
P and Fy are the gas density and pressure, and (x the
Keplerian orbital frequency. The gas has velocity V, , = r{2 in
the azimuthal direction and Vg, in the radial direction. Particles
have an azimuthal velocity V,, 4 and a radial velocity V},; that
differ from the gas velocity, and therefore particles experience
a drag force. The radial component of the force equation is
Vo V2 1

¢ 2
=— —Qgr— — Vor — Vo), 38
dt P K tstop(p, g,) ( )

where fy, is the aerodynamic stopping time defined by
matching the acceleration from the drag force to the term
above. Likewise, particles lose angular momentum due to the
aziumthal drag force:

1

d
o (rVp.p) = — (Voo — Veo)- (39)

stop
Using fy0p, we define the Stokes number as the product of
orbital frequency and aerodynamic stopping time:

St == QK tslop' (40)

In the special case of particles smaller than the molecular mean-
free path (Epstein limit), the aerodynamic stopping time and
Stokes number can be written in terms of particle properties as
a
St = Ok P , 41)
pg CS

where p,, and a are the particle density and radius, and C the
sound speed, which is appropriate for particles smaller than the
molecular mean-free path (Weidenschilling 1977; Cuzzi &
Weidenschilling 2006). For particles with a radius ¢ = 1 mm
at lau, assuming p, =102 gem™>, Ci~ 1kms™', and

St ~ 1073, In the limit of small particles, such that St < 1,

Takeuchi & Lin (2002) find a solution; assuming
Voo = Vo0 = 1 (X, they find
Vor —mStrQ
Vor = Jer TSR (42)
1 + St
The drift speed in this case is
—S Vy, — n StrQ
Au = Vyy — Vs = )

1+ St?

which is generally negative (inward), and which vanishes for
small particles. For millimeter-sized particles, with St ~ 1073,
the drift speed at 1 au is = V,, — n St r{X, both terms being of
the order ~107% au yr—!.

Weidenschilling (1977) derived a formula for the drift speed
starting with the same assumptions, which is valid for particles
of all sizes, and not just small particles in the Epstein regime.
Weidenschilling (1977) showed that meter-sized particles
would drift inward very rapidly at rates ~1072 au yr—!, which
are orders of magnitude greater than the drift rates of
millimeter-sized particles. Unfortunately, in the small-particle
limit, the calculation of Weidenschilling (1977) does not
reproduce that of Takeuchi & Lin (2002); when relating the
loss of angular momentum to the radial velocity of particles
(Weidenschilling’s Equation (19)), it is assumed that particles
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Figure 1. Simulated evolution over time of the concentration, ¢ (r), of a tracer
volatile using three different formulas to describe the radial transport. All three
cases begin with the same initial concentration, ¢ (r) = 0.1 between 1 and 2 au
(dotted lines), and have a turbulent viscosity v = 1073, The blue curves show
the c¢(r) at 0.1 Myr (dashed) and 1 Myr (solid) using the formula we suggest
(cf. Gail 2001). The orange curves likewise show the evolution using the
equation of GH06/CC06, and the brown curves show the evolution using the
equation of SL88. These two formulations tend to overestimate the amount of
diffusion that occurs.

have a radial velocity Au instead of Au + V.. While this
approximation is appropriate for rapidly drifting particles (or a
disk without radial flow), it is not appropriate for small particles
for which |Au| ~ |V,.|. We therefore prefer the formulation
of Takeuchi & Lin (2002) to account for the particle advection
and drift.

The last term to modify for radial transport of particles is the
diffusion term. Vapor and very small particles diffuse relative
to the gas with diffusion coefficient D,, which differs from the
turbulent viscosity v by a factor equal to the Schmidt number
D, = v Sc~!. Larger particles will diffuse at a rate that differs
from this value, depending on their aerodynamic stopping time
and the level of turbulence. We adopt the relationship

Dg v 8071

= = ) 44
1 +St2 1+ St? @4

(Youdin & Lithwick 2007; Carballido et al. 2011). It will be
convenient to define a new quantity

r 0
XD, or

P

0, = (ID,), (45)

which is analogous to the similar quantity Q' involving D.
Combining the above equations, we derive a differential
equation for ¢, the concentration of particles:

(+0) \1oe
Sc(1 +Std) ) ror
1 826] 1 0

Jdc 3
E—Vl(g(l +20) +

_ ~ L9 b awen.
TS 10 o [r (Qu) e]

ry or

Because the drift speed Au can vary in a complicated way
with particle size and position in the disk, we do not attempt to
generalize this equation further. For a more detailed discussion
of the transport of particles with arbitrary stopping times, and
the role of the Schmidt number, see Estrada et al. (2016),
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whose Equation (11) is consistent with our Equations (33)
and (46).

Among other treatments the radial transport of particles in
the literature, we find that the treatment of Birnstiel et al.
(2010) is essentially identical to the treatment presented here.
We note that the treatment of Brauer et al. (2008) follows
essentially the same lines, but assumes the diffusion coefficient
of particles is D, = D, (1 + St)~!, following V&lk et al.
(1980), Cuzzi et al. (1993) and Schréipler & Henning (2004),
instead of the form we prefer here, following Youdin &
Lithwick (2007) and Carballido et al. (2011). Our treatment
differs from that of Stepinski & Valageas (1996, their Equation
(18)), which resembles the treatment of Guillot & Hueso
(2006) and Ciesla & Cuzzi (2006) for gas diffusion, as
described above.

5. Discussion

The radial transport of gaseous volatiles and solid particles is
a problem that often arises in studies of accretion disks,
especially in studies of snow lines in protoplanetary disks.
Given the fundamental importance of volatile transport, it is
unfortunate that so many discrepant treatments of it exist in the
literature. The various formulas appear similar in form, but in
fact they can predict quite different results. In this section, we
explore in detail some implications of the use of different
volatile transport formulations in modeling disk evolution
using a simple « disk model to demonstrate disk behavior
under varying turbulent strengths using three different volatile
treatments. In addition, we also use water as our tracer species,
and explore the effects that each treatment has on the total
water abundance across the disk.

5.1. Effects of Diffusion in a Uniform o-disk

To illustrate the effects of diffusion, we perform simulations
of simple « disks that incorporate three different formulations
for volatile transport: (i) the treatment used in our work (also
that of Clarke & Pringle 1988, Gail 2001, and Bockelée-
Morvan et al. 2002); (ii) the treatment of Guillot & Hueso
(2006) and Ciesla & Cuzzi (2006) (hereafter GHO6/CCO06);
and (iii) Stevenson & Lunine (1988; herecafter SL88). The
results of the above simulations are shown with the evolution
of a dye, which was initially placed in an annulus between 1
and 2 au at time ¢t = 0, at times ¢t = 0.1 Myr and t = 1 Myr,
using the three different formulations. Disk simulations are
performed using the following values of a: 107% 107,
and 1072,

The underlying evolution of the disk is determined by
assuming v = ac’Q!, where ¢? = (kT/m) is the sound
speed, T(r) = 100 (r/1 au)"'/2 K is the disk temperature, r
is the heliocentric distance, and m = 2.33 m, is the mean
molecular  weight. The initial surface density is
Y(r) ~ 6000 (r/1 au) /2 gecm=2, as per Kalyaan et al.
(2015). Photoevaporation due to the minimum plausible
irradiation by an external ultraviolet field (Go = 0.1) is
assumed. We thereafter numerically calculate the evolution of
the disk using the treatment of Kalyaan et al. (2015). For the
alternate formulations tested here, we converted the original 3,
evolution equations of GH06/CC06 and SL88 to a mass
accretion rate M. for implementation into our code. This
required us to assume that (1/r)0(XD)/0r = 0 (i.e., Q' = 0)
in order to make the differential equation easily solvable.
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Figure 2. Simulated evolution over time of the concentration, ¢ (r), of a tracer
volatile using different radial transport formulas. Same as Figure 1, but for
disks with lower turbulent viscosity, o = 10~*. GH06/CCO06 are seen to
overestimate volatile diffusion in disks with low a.

Therefore in all cases of the alternative treatments, we use
identical XD, fixed at value at 1au so that Q' = 0. These
equations are as follows. For GH06/CCO06,

M, =cM + 67r (¥D) @; (46)
or
for SL&8,
M,=cM — 7c¥D + 27r (D) %; 47
r
and for comparison, the equation we use is
. . Oc
M. =cM + 27r (XD) 8_ (48)
r

Figures 1-3 show the results of our simulations for
intermediate (o = 1073), low (a = 10"%), and high
(a = 107?) values of a. Figure 1 (o = 1073) illustrates that
the different treatments predict very different volatile concen-
trations in the outer protoplanetary disk for « = 1073, At 10 au,
after 0.1 Myr, the concentration should be 3 x 1078, and at
1 Myr it should be 8 x 107*. The treatment of SL88 predicts
values of 2 x 1077 and ~1.5 x 1073, The treatments of
GHO06/CCO06 predict values of 2 x 107 and ~3 x 1073, Use
of the incorrect equation can overestimate the volatile
concentration by orders of magnitude. Figure 2 (o = 107%)
illustrates that the GHO6,/CCO06 equations show the diffusion of
vapor is enhanced by several orders of magnitude both inward
and outward of the annulus, at both 0.1 and 1Myr. At
4 au, GHO6/CCO06 predicts ¢ =1 x 107* at 0.1 Myr and
8 x 107" at 1 Myr. In contrast, SL88 and our work predict
similar concentrations of 1 x 10~% at 0.1 Myr and ~4 x 10>
at 1 Myr. In Figure 3 (o = 1072), it is seen that high « leads to
greater turbulent mixing in disks, which leads to largely similar
profiles and deviates in only factors of a few. Our treatment
predicts ¢ = 6 x 10 at 0.1 Myr, and ~3 x 10~* at 1 Myr, at
1 au. For comparison, GH06 /CCO06 predict 6 x 1072 (same as
ours) and ~2 X 1073, and SL88 predict 1 x 1072
and 1 x 107>

As expected, the choice of the treatment for volatile transport
is more significant for disks with lower «, but for reasonable
values of « it is pertinent to weakly turbulent midplanes of
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Figure 3. Simulated evolution over time of the concentration, ¢ (r), of a tracer
volatile using different radial transport formulas. Same as Figure 1, but for
disks with higher turbulent viscosity, v = 1072, GHO06/CC06 and SL88 both
predict slightly faster volatile diffusion in disks with high a.

protoplanetary disks, using the correct treatment is clearly
critical to accurately predicting volatile transport.

5.2. Radial Water Abundance across the Snow Line

As a second illustration of the effects of the different
formulas for a case with particle transport, we build on the
above disk model and include both volatile and particle
transport to determine the water ice-to-rock ratio across the
disk. We use our multi-fluid code to track each of the following
fluids: bulk disk gas (%,), water vapor (Xy4p), “icy” chondrules
composed entirely of water ice (Xicychondrules)> TOCKy” chon-
drules composed of silicates (Xrockychondrules), 1€y asteroids that
grow by accreting icy chondrules (Xicyas), and rocky asteroids
that grow by accreting “rocky” chondrules (X;ockyast). Further
details will be presented by A. Kalyaan et al. (2017, in
preparation). Uniform tracer concentrations c(r) ~ 10~* for
each component are assumed initially throughout the disk. Both
“icy” and “rocky” chondrules are assumed to be small solid
particles of 1 mm diameter and have the same initial uniform
surface density throughout the disk (5 x 1073 Dgas)-

Throughout the disk’s evolution, both icy and rocky
chondrules radially drift inward in the disk according to
Equation (43). Icy chondrules are additionally influenced by
the change of phase of water—ice to vapor at pressure and
temperature conditions close to the snow line region. To
determine what phase of water exists at a given location, we
first use the following equations to determine the saturation
water vapor pressure over ice at each radius r. For T > 169 K,
we use the formulation from Marti & Mauersberger (1993),

61329]{)dyncnr2, “9)

Pap(R) = 0.1 exp (28.868 -
while for T < 169 K, we use the formulation from Mauersberger
& Krankowsky (2003),

Piap(R) = 0.1 exp (34.262 — dyncm=2  (50)

7044.0 K)
We assume that the above formulation for 7 < 169 K
(Mauersberger & Krankowsky 2003) is sufficiently accurate
when extrapolated to lower temperatures (~150K), as the
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Figure 4. Simulated evolution over time of the total water abundance across
disk radius r (i-e-’ (Evapor + Zicychendrules + Eicyasuemids/Egas)) in a disk with
accretional heating. Same as Figure 1. Blue profiles show 0.1 Myr (dashed) and
1 Myr (solid) with the formulation used here (cf. Gail 2001). Orange profiles
similarly show formulations used by GH06/CC06, and brown profiles show
those by SLS88.

authors suggest. The surface density equivalent of Ry, is then
calculated as

P,
Sh,0.q(T) = N27 ( ;’]. (51)

Cs

The densities of vapor and ice in this condensation—
evaporation region are then determined as follows. If
Yn,0,vap(T) exceeds the total water content (excluding water
already accreted into asteroids) at radius r (ie., Xyp +
Yicy chondrules)> then we assume that all of the water is converted
into vapor. On the other hand, if Xy,0,vap(7) is less than the
total water content (excluding water in asteroids), then we
assume that ¥, = Yj,0,¢q and the remaining water is in water
ice. Asteroids are assumed to grow from chondrules at a
timescale foown ~ 1 Myr and behave as a sink for water
beyond the snow line, as follows:

82icyasl

ot 1, growth

_ Zicy chondrules (52)

Radial drift of asteroids and their migration is ignored in this
study.

We have incorporated the different diffusion formulations
into an «-disk model as in Section 5.1, with radial particle
transport and condensation—evaporation of volatiles as
described above, along with accretional heating. Following
Lesniak & Desch (2011), this model assumes that accretion is
dominant only in the active surface layers of the disk, whose
surface density is assumed to be ¥, ~ 10 g cm~2, for which
the optical depth through the active layer is 7 = K Zycgives
where k = 10 cm? g~!. Thereafter, the midplane temperature is
calculated as follows:

27
4 4
0T mia = UTpassive + 3_2 Sact Vact S T. (53)
Here, v, = ac,H, where o, is assumed to be 0.1.

Figure 4 traces the distribution of water across the disk by
plotting the total water content (i.e., (Xvapor + Zicychondrules +

Yicyasteroids) /2gas)) against heliocentric distance r, at 0.1 Myr

Desch et al.

(dashed) and 1 Myr (solid) in an accretionally heated disk.
Water content with a heliocentric distance changes significantly
with the diffusion treatment used—as both GHO06,/CC06
and SL88 predict faster volatile diffusion timescales than our
work—and therefore show a greater enhancement of icy-rocky
material (in comparison to initial Xrckychondrules Shown by black
dashed line) just beyond the snow line between 1 and 3 au. We
note that the greatest deviation from our work is with
the GHO6,/CCO6 profiles that show a sustained enhancement
in ice-to-rock ratio by a factor of 2 just beyond the snow line at
0.1 and 1 Myr. As timescales for core growth are inversely
proportional to solids-to-gas ratio (Kokubo & Ida 2002), an
erroneous enhancement of icy and rocky material would seem
to decrease core-growth timescales significantly, which over-
estimates the rate of growth of planetesimals and eventually
planets.

6. Summary

In the current literature, nine independent derivations have
resulted in six mutually exclusive equations for volatile
transport. These different treatments make significantly differ-
ent predictions about the abundance of water and the surface
density of ice. The large difference in the predicted outcomes
underscores how important it is to use the correct equation to
calculate radial transport of volatiles. We have derived the
volatile transport equations starting with Fick’s law and have
identified the correct equations to use. With the discrepancies
between existing treatments explained and the correct forms
identified, we hope that this paper can serve as a resource for
the disk modeling community.

The authors tried to review the literature as comprehensively
as possible, and apologize if they overlooked other original
treatments of radial diffusion in protoplanetary disks.

This work is partially supported by a grant from the Keck
Institute for Space Studies. The results reported herein benefitted
from collaborations and/or information exchange within NASA’s
Nexus for Exoplanet System Science (NExSS) research coordina-
tion network sponsored by NASA’s Science Mission Directorate.
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